Find the nature of the roots of the following quadratic equations. If the real roots exist, find them.

(i) 2x2 – 3x + 5 = 0
(ii) 3x2 – 4√3x + 4 = 0
(iii) 2x2 – 6x + 3 = 0

Solution

(i) 2x2 – 3x + 5 = 0

Comparing the equation with ax2 + bx + c = 0, we get

a = 2, b = -3 and c = 5

We know, Discriminant = b2 – 4ac

= ( – 3)2 – 4 (2) (5) = 9 – 40

= – 31

As you can see, b2 – 4ac < 0

Therefore, no real root is possible for the given equation, 2x2 – 3x + 5 = 0

(ii) 3x2 – 4√3x + 4 = 0

Comparing the equation with ax2 + bx + c = 0, we get

a = 3, b = -4√3 and c = 4

We know, Discriminant = b2 – 4ac

= (-4√3)2 – 4(3)(4)

= 48 – 48 = 0

As b2 – 4ac = 0,

Real roots exist for the given equation, and they are equal to each other.

Hence, the roots will be –b/2a and –b/2a.

b/2a = -(-4√3)/2 × 3 = 4√3/6 = 2√3/3 = 2/√3

Therefore, the roots are 2/√3 and 2/√3.

(iii) 2x2 – 6x + 3 = 0

Comparing the equation with ax2 + bx + c = 0, we get

a = 2, b = -6, c = 3

As we know, Discriminant = b2 – 4ac

= (-6)2 – 4 (2) (3)

= 36 – 24 = 12

As b2 – 4ac > 0,

Therefore, there are distinct real roots that exist for this equation, 2x2 – 6x + 3 = 0

x = [-b ± √(b2 – 4ac)]/2a

= (-(-6) ± √(-62-4(2)(3)) )/ 2(2)

= (6 ± 2√3 )/4

= (3 ± √3)/2

Therefore, the roots for the given equation are (3 + √3)/2 and (3 – √3)/2