Prove that 3 + 2√5 is irrational.

Solution:

Let us assume 3 + 25 is rational.

Then we can find co-prime x and y (y ≠ 0) such that 3 + 2√5 = x/y

Rearranging, we get,

2√5 = (x/y) – 3

√5 = 1/2[(x/y) – 3]
Since, x and y are integers, thus,

1/2[(x/y) – 3] is a rational number.

Therefore, 5 is also a rational number. But this contradicts the fact that 5 is irrational.

So, we conclude that 3 + 25 is irrational.

Hence proved.